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Abstract

Myeloid-derived Suppressor Cells (MDSCs) are a heterogeneous population of 
cells that expands during infection, inflammation and cancer and has the ability to 
suppress T-cell responses. Therefore these cells constitute a unique component of the 
immune system that regulates immune responses not only in healthy individuals but 
also in the context of various diseases, including acute and chronic liver pathologies as 
well as hepatocellular carcinoma. In this article, we review the available data on the 
distribution and function of MDSCs in liver diseases and discuss whether and how the 
properties of these cells could be manipulated for therapeutic purposes.   

ABBREVIATIONS
MDSCs: Myeloid-Derived Suppressor Cells; HSC: Hepatic 

Stellate Cells; IL-10: Interleukin-10; TGF-β1: Transforming 
Growth Factor-β1; Tregs: Regulatory T Cells; ROS: Reactive 
Oxygen Species; CH: Chronic Hepatitis; HCC: Hepatocellular 
Carcinoma; HCV: Hepatitis C Virus; RVR: Rapid Virologic 
Response; EVR: Early Virologic Response; HBV: Hepatitis B 
Virus; FH: Fulminant Hepatitis; D-Gal: D-Galactosamine; ConA: 
Concanavalin A; CBD: Cannabidiol; FXR: Farnisoid X Receptor.

INTRODUCTION 
The liver has unique immune regulatory functions that 

promote the induction of tolerance rather than responses to 
antigens encountered locally [1]. The liver tolerogenic property 
was initially demonstrated by spontaneous acceptance of liver 
transplants in mice without requirements of immunosuppression, 
and in human beings, weaning off immunosuppression can be 
obtained for at least one year in nearly one fifth of liver transplant 
recipients [2]. In contrast, hepatocyte transplants are rapidly 
destroyed through a process that is immunologically-mediated, 
while hepatocytes survive indefinitely in syngeneic recipients and 
allogeneic SCID recipients, thus suggesting that local immune-
suppressive mechanisms help prevent hepatocyte damage [3]. 
Indeed, liver contains enzymes that influence negatively the 
function of lymphocytes, such as tryptophan-2,3-deoxygenase, 
which converts tryptophan into immune regulatory molecules 
(i.e. N-formyl-kynurenine), and arginase, which metabolizes 
arginine [1]. Moreover, Kupffer cells and Hepatic Stellate Cells 
(HSC) produce interleukin (IL)-10 or Transforming Growth Factor 
(TGF)-β1 respectively thus contributing to inhibit local T cell 

responses  [4,5]. Consistently, co-transplantation of hepatocytes 
with HSC in mice results in long-term survival of allografts 
without requirement of immunosuppression [3]. The HSC-
mediated inhibition of the tissue-damaging immune responses 
relies also on the ability of these cells to promote CD8+ T cell 
apoptosis [6], increase the fraction of Foxp3+ regulatory T cells 
(Tregs) [7,8] and induce the differentiation of Myeloid-Derived 
Suppressor Cells (MDSCs) [3,9], a class of cells with regulatory 
properties initially identified in cancer patients and supposed 
to contribute to cancer evasion from immune surveillance 
[3]. MDSCs are a heterogeneous population of myeloid cells 
consisting of progenitor and immature myeloid cells [10,11]. In 
mice, MDSCs co-express the myeloid-cell lineage differentiation 
antigens CD11b and Gr1, with the later having two different 
epitopes, Ly6G and Ly6C that help identify two MDSCs subsets: 
granulocytic MDSCs with a CD11b+ Ly6G+Ly6C-low phenotype 
and monocytic MDSCs with a CD11b+Ly6G-Ly6C-high phenotype 
[12,13]. Functionally, MDSCs suppress T-cell responses via 
numerous mechanisms, including cysteine deprivation [14], up-
regulation of Reactive Oxygen Species (ROS) [15,16], production 
of nitric oxide [11] and increased metabolism of the amino acid 
L-arginine through the expression of arginase-1 [17,18]; this 
latter pathway down-regulates CD3+ T cell receptor ζ expression 
and inhibits T cell proliferation [19]. Moreover, MDSCs promote 
Treg cell induction and expansion [20,21]. MDSCs accumulate not 
only within the tumor but also in lymphoid organs (e.g. spleen 
and bone marrow) and peripheral blood circulation [22]. The 
liver has recently been shown to be a preferred site for homing 
and expansion of MDSCs during infectious and neoplastic 
diseases [23].
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In this article we review the data available on the dual role 
of MDSCs in liver pathologies and discuss whether and how the 
properties of these cells could be manipulated for therapeutic 
purposes.   

Myeloid-derived suppressor cells in chronic hepatitis

Chronic hepatitis (CH) is one of the main causes of liver 
cirrhosis and Hepatocellular Carcinoma (HCC) worldwide [24].  
Hepatitis C Virus (HCV) infection is the main cause of CH, as 
approximately 130-200 milions of individuals are chronically 
infected with HCV [25]. In HCV-infected patients, the viral RNA load 
remains high during the first weeks of infection and declines after 
6-8 weeks, in parallel to the appearance of virus-specific CD8+ T 
cells in the peripheral blood [26-28]. In contrast, in patients with 
CH, HCV-specific CD8+ T cell responses are typically weak and 
can often be lost due to viral escape mutations or suppression by 
regulatory mechanisms  [27,29,30]. Emerging evidence indicates 
that MDSCs can drive the liver disease progression in CH given 
their ability to down-regulate T cell function [29]. Zeng and 
colleagues determined the frequency of CD33+CD11b+Lin1−
HLA-DR- MDSCs in the peripheral blood of 61 treatment-naive 
patients with HCV-related CH, 14 patients undergoing pegylated-
interferon-α/ribavirin therapy who developed a Rapid Virologic 
Response (RVR) and 22 patients who developed an Early Virologic 
Response (EVR) [31]. A significantly higher frequency of MDSCs 
was seen in treatment-naïve patients compared to healthy 
controls, patients with RVR or patients with EVR, and there was a 
significant positive correlation between the frequency of MDSCs 
and HCV RNA load. Immunohistochemical analysis revealed that 
arginase-1-positive cells accumulated in the livers of CH patients, 
and the number of such cells was strictly associated with the 
extent of inflammatory injury [31]. Consistent with the ability of 
MDSC-derived arginase-1 to deplete L-arginine in CD8+ T cells 
and, hence, to down-regulate CD3 ζ and inhibit T cell function, 
lymphocytes infiltrating the livers of CH patients had reduced 
expression of CD3 ζ, a phenomenon that was reverted by the in 
vitro treatment of lymphocytes with exogenous L-arginine. In 
patients who achieved either RVR or EVR, there was a decreased 
frequency of MDSCs, which correlated positively with the HCV 
RNA load decline and negatively with TCR ζ expression on CD8+ 
T cells [31].  Collectively, these findings are in line with another 
report showing that frequency of MDSCs was increased in the 
peripheral blood of treatment-naïve HCV-related CH patients and 
correlated with plasma HCV-RNA, blood aminotransaminase, and 
activated T cells, and was decreased by successful therapy [32].  
In contrast, a recent paper documented no difference in terms of 
MDSC frequency between HCC patients and healthy controls [33].

Studies by Tacke and colleagues suggest that HCV by itself 
could favor development of MDSCs, as hepatocytes infected with 
HCV clone, JFH-1, induce human CD33+ monocytes to differentiate 
in MDSCs, which exhibit up-regulation of p47phox, a component 
of the nitrogen oxide 2 complex involved in ROS production [16]. 
ROS-producing MDSCs, which express high levels of p47phox, 
accumulate in the peripheral blood of chronically HCV-infected 
individuals and extracellular HCV core-induced MDSCs suppress 
autologous T-cell proliferation and IFN-γ production following 
TCR stimulation [16]. Taken together these findings raise the 
intriguing possibility that differentiation of MDSCs is one of the 
mechanisms by which HCV evades the host’s immune response. 

Little is known about the frequency and function of MDSCs 
in Hepatitis B Virus (HBV) infection. Studies in HBV transgenic 
mice, a murine model of chronic HBV carrier state, documented 
increased frequency of MDSCs in the livers of infected animals 
as compared to normal mice, and MDSCs suppressed the 
proliferative capacities of allogeneic T cells and HBV surface 
antigen-specific lymphocytes through alteration of T cell antigens 
and impairment of interferon-γ production [34]. 

MDSCs in liver cancer  

MDSCs represent nearly one third of the normal bone marrow 
cells and less than 3% of all nucleated splenocytes in tumor-free 
mice but expand in cancer-bearing mice and accumulate markedly 
in the livers of tumor-bearers [23,35]. Such an accumulation is 
seen in mice with both primary and secondary liver tumors and 
their appearance in the liver accelerates the formation of liver 
metastasis [23,36]. MDSCs expressing CD14 but little or no HLA-
DR and having high arginase activity are significantly increased 
in peripheral blood and tumoral areas of patients with HCC [37]. 
The frequency of MDSCs has also been correlated with tumor 
progression and clinical staging in HCC patients, as indicated by a 
significant decrease in the number of circulating MDSCs in most 
patients with curative treatment [37,38].

The exact mechanism underlying the recruitment of MDSCs to 
the liver is not fully understood but chemokines produced within 
the tumor microenvironment can stimulate homing of MDSCs 
to this organ. This does not however exclude the possibility 
that MDSCs could also be arising from the liver. In this context 
it is noteworthy, for example, that GM-CSF, which is secreted by 
various human and mouse cancers, expands MDSCs in the livers 
in the absence of a growing tumor [23]. 

Besides suppressing effector T cells, MDSCs have further 
immunological properties, which might allow liver tumors to 
evade immune system. These include differentiation of cells 
with immunoregulatory properties (i.e. type 2 macrophages, 
Tregs, and IL-10-secreting T cells) [37,39], inhibition of NK cell 
cytotoxicity and cytokine production through cell-cell dependent 
contact mechanisms with the NK receptor, NKp30 [40]. Moreover, 
expression of membrane bound-TGF-β on MDSCs, and not Tregs, 
contributes to reduce IFN-γ expression, NKG2D and cytotoxicity 
by NK cells [35]. Consistently, the impaired function of hepatic 
NK cells in orthotopic liver cancer-bearing mice can be restored 
by depletion of MDSCs, but not Tregs [35]. 

The protective role of MDSCs in immune-mediated 
liver diseases 

Studies in experimental models of immune-mediated liver 
pathologies indicate that MDSCs may play a protective role in 
Fulminant Hepatitis (FH) (also termed fulminant liver failure or 
acute liver failure). FH is the clinical manifestation of sudden and 
severe hepatic injury, which arises from many causes, including 
viruses, drugs and toxins, and may result in severe impairment 
of liver function, followed by hepatic encephalopathy, and 
progressive multiorgan failure [41]. Histopathologically, FH 
is characterized by diffuse intrahepatic infiltration by T cells 
with massive multilobular necrosis. Although mouse models of 
acute liver injury, such as those induced by administration of 
hepatotoxins [e.g. D-Galactosamine (D-Gal)] [42] or injection of 
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T cell-activating substances [e.g. concanavalin A (ConA)] [43], 
do not exactly recapitulate the pathogenic alterations of FH, they 
have contributed to show that macrophages, NK cells, NKT cells 
and T cells all play a crucial role in experimental liver injury, and 
attenuation of experimental FH can be accomplished by targeting 
such cells [44]. In this context, we have recently shown that human 
FH associates with a reduced synthesis of IL-25 [45], a member 
of the IL-17 cytokine gene family that delivers negative signals 
to macrophages/dendritic cells with the downstream effect of 
suppressing Th1- [46] and Th17-mediated [47] inflammatory 
responses in various organs. Similarly, liver production of IL-25 
was reduced in mice with acute liver injury induced by activation 
of liver macrophages and T cells via the systemic administration 
of D-Gal+LPS or ConA respectively, and such a reduction was 
paralleled by enhanced synthesis of inflammatory cytokines, 
such as IL-6 and TNF [45]. Treatment of mice with recombinant 
IL-25 prevented liver damage in both models, and this counter-
regulatory effect was associated with a significant increase 
in the number of Gr1/CD11b-expressing MDSCs [45]. MDSCs 
isolated from IL-25-treated mice given D-Gal/LPS restrained T 
cell activation in vitro thus confirming their suppressive nature. 
Consistently, depletion of such cells from mice abolished the IL-
25-mediated protection against D-Gal/LPS-induced liver damage 
[45]. 

The molecular mechanism by which IL-25 promotes 
accumulation of MDSC in the livers of mice with FH remains to be 
ascertained, even though it is conceivable that IL-25 induces the 
synthesis of chemokines (i.e. CCL17), which could promote the 
recruitment of MDSCs from the periphery during FH [45]. 

Hegde and colleagues demonstrated that cannabidiol (CBD), 
a natural non-psychoactive cannabinoid, inhibited ConA-induced 
hepatitis and increased the number of arginase-expressing 
CD11b/Gr-1-positive MDSCs in the liver [48]. Purified CBD-
induced MDSCs were able to suppress T cell proliferation in 
vitro in an arginase-dependent manner and protected mice from 
ConA-induced liver injury following adoptive transfer into naïve 
mice [48]. CBD failed to induce MDSCs and suppressed ConA-
induced hepatitis in the livers of vanilloid receptor-deficient 
mice, thus suggesting that CBD primarily acted via this receptor 
to induce MDSCs [48]. The ability of CBD to induce MDSCs and 
suppress hepatitis was also demonstrated in Staphylococcal 
enterotoxin B-induced liver injury [48]. Along the same line was 
the demonstration that activation of farnesoid X receptor (FXR), a 
highly expressed hepatic nuclear bile acid receptor that regulates 
expression of genes involved in liver homeostasis and immune 
regulation, reduced acute liver injury induced by ConA and D-Gal/
Cer and such a treatment produced a robust expansion of MDSCs 
in the liver [49]. A protective role of MDSCs in the liver has been 
documented in further models of acute liver injury,  such as that 
seen in mice deficient in the gene encoding TGF-β1  [50].

CONCLUDING REMARKS
The data discussed in this article highlight the critical role 

of MDSCs in the control of immune responses in the liver in 
both healthy and pathological conditions and suggest that 
manipulation of MDSCs may have therapeutic implications. 
Since MDSCs suppress immunity against tumors and their 
accumulation in the liver negatively affects the course of HCC, 

treatments eliminating MDSCs themselves or targeting MDSC-
derived suppressive factors, such as antibody depletion of Gr1 
cells, chemotherapeutic drugs or retinoic agents, could improve 
the efficacy of anti-cancer compounds [34,37,40]. In this context, 
for example, it has been demonstrated that the administration 
of anti-c-Kit antibody to mice bearing MCA26 colon carcinoma 
cells in the liver resulted in a dramatic enhancement in T cell 
proliferation, which was associated with reduced numbers of 
MDSCs and Tregs in the bone marrow and spleen and reduced 
angiogenesis [51]. The modulation of MDSCs for the reversal of 
tolerogenic responses could be beneficial not only in a malignancy 
setting but can be exploited to boost T cell responses against 
HVC-related CH and facilitate virus clearance [28]. In designing 
therapeutic interventions around MDSCs, some relevant issues 
need however to be taken into consideration. Approaches that 
directly target MDSC within the liver microenvironment could 
amplify T cell-dependent immune signals that eventually cause 
liver damage (e.g. FH, autoimmune hepatitis). Moreover, a more 
detailed analysis of mediators of immune-suppression in HCC 
showed that the increased frequency of MDSCs was associated 
with increased numbers of Tregs and enhanced production of 
immunosuppressive cytokines [52]. This suggests that multiple, 
and not single, immune-regulatory defects contribute to dampen 
the host immune response against HCC. Indeed, in vitro studies 
showed that activation of effector T cells of HCC patients was 
improved only whether both MDSCs and Tregs were depleted 
[52]. We also feel that further experimentation will be needed 
to better determine at which stage of either CH or HCC these 
immune-regulatory cells act and which factors/mechanisms 
promote their accumulation in the liver. Similarly, more work will 
be necessary to ascertain whether MDSC frequency in the blood 
is an useful tool for predicting the responsiveness to therapy and 
prognosis of the patients. Finally, the recent demonstration that 
MDSCs are induced in mice with carbon tetrachloride-induced 
liver fibrosis [53] suggests the necessity of further studies to 
evaluate whether these cells may be beneficial in the prevention 
of cirrhosis.    
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